
netZooC Documentation
Release 0.2

netZooC

Feb 13, 2023

CONTENTS

1 Contents 3
1.1 Changelog . 8

2 Indices and tables 9

i

ii

netZooC Documentation, Release 0.2

netZooC is a catalog of methods for the reconstruction and analysis of network biology methods.

CONTENTS 1

netZooC Documentation, Release 0.2

2 CONTENTS

CHAPTER

ONE

CONTENTS

Installation guide

To install netZooC on your computer, please check the following requirements:

Requirements

• g++ compiler

Install

• git clone https://github.com/netZoo/netZooC.git

• cd netZooC/zooAnimalFolder

• make

• Upon successful make, please run the program as detailed in the example section of the function description.

PANDA

Written by Kimberly Glass (kglass@jimmy.harvard.edu), available under GPL. As academic code it is provided without
warranty. Please contact the author with any comments/questions/concerns. Last updated July, 2014.

PANDA is written in c++ and can be compiled by:

g++ PANDA_vc.c -o PANDA

To improve runtime speed, it is also highly encouraged to include an optimazation flag:

g++ PANDA_v2.c -O3 -o PANDA

Running the program without any parameters will return a usage function:

./PANDA

Usage ./PANDA ``` -e (required) file of expression values (can alternately be a list of gene names)

-m (required) pair file of motif edges

-p (optional) pair file of PPI edges

-o (optional) tag for output files

-a (optional) value to be used for update variable, alpha (default=0.1) ```
Additional options (see README): ``` -k (optional) kill the program after it has run k steps (default=1000)

-n (optional) output a “stats” file every n steps (default, no stats file)

-w (optional) file with list of covariate weights

-l (optional) leave out the lth sample when building the network

-j (optional) retain only j samples when building the network

3

https://github.com/netZoo/netZooC.git
mailto:kglass@jimmy.harvard.edu

netZooC Documentation, Release 0.2

-r (optional) randomization options

-s (optional) value to seed the random number generator (defaults to system time)

-v (optional) verbose output options ```
There are two required parameters, the names for two input files: a tab-delimited text file with the gene expression
values and a tab-delimited text file with motif information. You may also choose to specify an string to generate output
file names, the default value for this is “PANDA_prediction”.

examples:

``` ./PANDA -e ToyExpressionData.txt -m ToyMotifData.txt -o ToyOutput

./PANDA -e ToyExpressionData.txt -m ToyMotifData.txt -p ToyPPIData.txt -a 0.25 -o ToyOutput ```
Running these examples will produce a network file: ToyOutput_FinalNetwork.pairs

#### DATA:

Within the “YeastData” directory, the file “YeastNetwork_allTFxGene” contains the final z-score edge weights for the
networks analyzed in “Passing Messages between Biological Networks to Refine Predicted Interactions.” This folder
also contains the expression, motif and PPI data files used to generate the networks. Please see the supplemental
material of the publication for more information on this data.

The “ToyData” directory has some small ‘toy’ datafiles that can be used to quickly run/understand PANDA.

#### FILE FORMATS:

Expression data file: In the expression data file the first column must contain gene names, and each subsequent column
should contain expression values for those genes across conditions/samples (see “ToyExpressionData.txt”). Note that
if fewer than three conditions are contained in the expression data file, PANDA will initialize the co-regulatory network
to an identity matrix. This file can also contain header lines, so long as those lines are preceeded by a hashtag (#).

Motif data file: The motif data file contains three columns (see “ToyMotifData.txt”). The first column should contain
regulators, the second those regulator’s target genes, and the third, an initial weight to give the interactions (recommend
1). Any potential regulator to gene interaction not specified in this file is given a default interaction weight of 0. Any
interaction that is multiply defined will be given a weight equal to the sum of the weights given to the instances of that
interaction. Note that PANDA will give an warning message if a gene in the motif file is not contained in the expression
data file. This file cannot contain header lines.

Protein interaction file: The protein interaction file (optional) contains three columns (see “ToyPPIData.txt”). The first
two columns should contain a pair of regulators, and the third, an initial weight to give the interactions (recommend 1).
Note that the program will give an warning message if a regulator in this file is not contained in the motif data. This
file cannot contain header lines.

#### Outputted network files (including “stats” files):

The network files contain four columns:

TF t Gene t Motif-prediction t PANDA-prediction

The values in the fourth, “PANDA-prediction”, column, can loosely be interpreted as Z-scores.

#### ADDITIONAL OPTIONS:

PANDA allows the user to specify a number of options. Some of these have been implemented as we apply the PANDA
algorithm to other systems. Any comments/questions/suggestions are welcomes (email: kglass@jimmy.harvard.edu).

“-a” allows a user to specify a different value for the update parameter, alpha. Larger values of alpha causes quicker
convergence, and often greater “mixing” of motif and non-motif edges. Recommend values between 0.05 and 0.25.
(Author note: The default of 0.1 was chosen since as ChIP-seq validation of human networks appears to show this gives
the most accurate results. However for quicker analysis I strongly suggest starting with 0.25 as there is only a small
loss in accuracy but an immense speed-up in time).

4 Chapter 1. Contents

mailto:kglass@jimmy.harvard.edu


netZooC Documentation, Release 0.2

example: ./PANDA -e ToyExpressionData.txt -m ToyMotifData.txt -a 0.25 -o ToyOutput

“-k” sets the maximum number of iterations PANDA can run before exiting.

example: ./PANDA -e ToyExpressionData.txt -m ToyMotifData.txt -k 2 -o ToyOutput

“-n” tells PANDA to print the network every N steps, instead of just the final predicted network.

example: ./PANDA -e ToyExpressionData.txt -m ToyMotifData.txt -n 5 -o ToyOutput

“-w” triggers PANDA to calculate a weighted Pearson (in lieu of the standard Pearson correlation), using weights spec-
ified in a “covariate weight file.” The file should contain a single column of numbers. Each row in the file corresponds
directly to a column in the expression data file.

example usage: ./PANDA -e ToyExpressionData.txt -m ToyMotifData.txt -w ToyWeights.txt -o ToyOutput

“-l” can be used to leave out a specified expression sample when building the network. 1 leaves out the first sample, 2
leaves out the second sample, etc.

example usage: ./PANDA -e ToyExpressionData.txt -m ToyMotifData.txt -l 10 -o ToyOutput (leaves out the 10th column
of the expression data when building the network)

“-j” can be used to jack-knife (random sampling without replacement) the samples in the original expression data. The
value indicates the number of samples to use building the network, so this value should be less than the total number
of samples and greater than two (since one needs at least three data points to calculate a correlation).

example usage: ./PANDA -e ToyExpressionData.txt -m ToyMotifData.txt -j 40 -o ToyOutput (chooses 40 random ex-
pression samples/conditions to build network)

“-r” allows the user to specify several different randomization options. “-r 1” swaps gene labels, such that each row in
the expression data is assigned to a random gene. “-r 2” swaps condition labels, such that each column in the expression
data is assigned to a random weight value in the covariate weight file. “-r 3” assigns each condition a random weight
value and prints out these values. If used in conjuction with the “-w” option, only conditions that have an original
weight value greater than zero are assigned random weight values.

examples: ``` ./PANDA -e ToyExpressionData.txt -m ToyMotifData.txt -r 1 -o ToyOutput

./PANDA -e ToyExpressionData.txt -m ToyMotifData.txt -w ToyWeights.txt -r 2 -o ToyOutput ```
“-s” allows the user to seed the random number generator (which otherwise defaults to the current system time). Must
be an integer greater than zero.

example: ./PANDA -e ToyExpressionData.txt -m ToyMotifData.txt -r 1 -s 1000 -o ToyOutput

“-v” triggers several verbose output options. “-v 1” tells PANDA to print out the mean and standard-deviation of the
availability and responsibility at each iteration. “-v 2” tells PANDA to write files containing all three networks (gene-
gene co-regulatory, TF-gene regulatory, and TF-TF co-regulating) at both the initial and final states (producing six
files). The gene-gene co-regulatory networks can be very large, so use this option with caution.

example usage: ./PANDA -e ToyExpressionData.txt -m ToyMotifData.txt -v 1 -o ToyOutput

### PUMA

PUMA, or **P**ANDA **U**sing **M**icroRNA **A**ssociations, is a regulatory network reconstruction algo-
rithm that uses message passing to model gene regulatory interactions. PUMA can reconstruct gene regulatory networks
using both transcription factors and microRNAs as regulators of mRNA expression levels. This Github repository con-
tains both a MATLAB and a C++ version of PUMA.

The code can be compiled using: ` g++ PUMA.c -O3 -o PUMA `

To run PUMA with the assumption that all regulators can form complexes (estimate responsibility for all regu-
lators, eg a gene regulatory prior with transcription factors only): ` ./PUMA -e ToyExpressionData.txt -m
ToyMotifData.txt -o ToyOutput `

5



netZooC Documentation, Release 0.2

To tell PUMA to discriminate between regulators that can, and regulators that cannot cannot form complexes (for
example a list of microRNAs in miRlist.txt), run: ` ./PUMA -e ToyExpressionData.txt -m ToyMotifData.
txt -u miRlist.txt -o ToyOutput `The PUMA C++ code was based on the PANDA C++ version 2 sourceforge
project: https://sourceforge.net/projects/panda-net/.

## Troubleshooting

• To report any installation issue or function bug, please report through opening an [issue](https://github.com/
netZoo/netZooC/issues) on github.

# Functions

## PANDA

Description:

PANDA is an algorithm that creates gene regulatory network through passing messages between gene
expression networks, TF-Gene motif priors, and TF-TF PPI networks.

Inputs:

-e (required) file of expression values (can alternately be a list of gene names) -m (required) pair file of
motif edges -p (optional) pair file of PPI edges -o (optional) tag for output files -a (optional) value to be used
for update variable, alpha (default=0.1) Additional options (see README): -k (optional) kill the program
after it has run k steps (default=1000) -n (optional) output a “stats” file every n steps (default, no stats file)
-w (optional) file with list of covariate weights -l (optional) leave out the lth sample when building the
network -j (optional) retain only j samples when building the network -r (optional) randomization options
-s (optional) value to seed the random number generator (defaults to system time) -v (optional) verbose
output options

Outputs:

(tag_for_output_file)_FinalNetwork.pairs: Bipartite gene-TF regulatory network where each line repre-
sents an edge in the graph (a TF-GENE pair).

Examples:

./PANDA -e ToyExpressionData.txt -m ToyMotifData.txt -o ToyOutput ./PANDA -e ToyExpression-
Data.txt -m ToyMotifData.txt -p ToyPPIData.txt -a 0.25 -o ToyOutput

Publications:

https://doi.org/10.1371/journal.pone.0064832

Authors:

Kimberley Glass

Changelog:

Version 1 Modifications (May 2013): 1) added “randomseed” variable which allows the user to specific the
random number generator seed (“srand(randomseed)”). This is useful when doing paired randomizations
(e.g. if one wants the gene labels to be swapped the same way for two different sets of input data). 2)
added in a second method of randweights (randweight=2 set by specifying -r 3 at the command prompt).
This generates a random-weight value for any covariate weight that was initially greater than zero, but
leaves zero weights unchanged. 3) Removed criteria that a protein in the PPI must be a member of the
regulatory prior. Instead add in any “new” proteins into the regulatory prior assuming no known regulatory
interactions. 4) Removed criteria that the TF/motif in the regulatory prior must also be a gene in the
expression data. This allows regulators to take names that aren’t gene names (e.g. a regulator could be
TAL1::GATA1, but the genes are in RefSeq annotation). One limitation is that correlation in expresion
levels between “TFs” and genes is no longer calculated. This information, however, was never used by
PANDA, so removing the calculation had the added benefit of freeing up memory. 5) added in another
verboseoutput option. Now setting “-v 2” at the command prompt will cause PANDA to print out additional

6 Chapter 1. Contents

https://sourceforge.net/projects/panda-net/
https://github.com/netZoo/netZooC/issues
https://github.com/netZoo/netZooC/issues
https://doi.org/10.1371/journal.pone.0064832


netZooC Documentation, Release 0.2

files recording the initial and final protein-interaction and co-regulatory networks. Changed the behavior
of the code such that an initial regulatory network is only printed out when using this option. 6) Increased
the number of Regulators allowed by Program to 1000. 7) Modified function that reads in regulatory and
co-regulating information such that it can handle multiple instances. Single instances in the input files
will result in the initial value being set equal to the value in the “weight” column. If an interaction is
multiply defined, the initial value will be set equal to the sum of values associated with these instances
in the “weight” column. Undefined instances are given a default value of 0. Version 2 Modifications
(July 2014): 1) added in “LeaveOutSample” to leave out a single sample from the network reconstruction.
2) fixed missing string termination that could cause the terminal window to become bold. 3) added in
the “JackKnife” option to designate number of samples to use in a jack-knife network. 4) modified the
ReadInExpression function to allow users to add additional rows to their expression file (likely header
rows), so long as the first character in these rows is a hashtag (#). 5) Changed length of “TF” in regulation
struct to be 64 characters, in preparation to longer miRNA names. 6) Created default value for outtag so
that the -o command-line option is now optional instead of required. 7) Defined MAXGENES, MAXTFS,
MAXCONDITIONS, BUFSIZE, and MAXPATHLENGTH to allow easier manipulation of these values
should they need to be altered. 8) Added some additional outputs that tell the user what the code is doing.
9) Put in catch when normalizing the prior for the case where a TF and its potential target gene both have
no targets/inputs (variance of 0 in the prior). 10) removed index, indegree and outdegree parts of the
genes and regulation structures as they were not being used. 11) Restructured code so that there are much
fewer global variables and most are declared locally. 12) Modified ReadInExpression function to sum over
multiple entries of a gene in the expression file. 13) Added in program exits triggers for if input files have
more than MAXGENES MAXTFS or MAXCONDITIONS. Potential Future improvements: * change the
Genes.corr and Regulation.P from symmetrix matrices to vectors to save on memory space (especially for
the former) * remove the exp and stderr portions of the Genes and Regulation structs and make them local
vectors (currently they are only used to normalize the initial PPI and corr matrices and nothing else). *
parralize the code by adding options for multi-threading for-loops using the openmp library, shoud enhance
speed.

## PUMA

Description:

PUMA, or PANDA Using MicroRNA Associations, is an extension of the gene regulatory network recon-
struction algorithm PANDA. PUMA can reconstruct gene regulatory networks using both transcription
factors and microRNAs as regulators of mRNA expression levels.

Inputs:

-e (required) file of expression values (can alternately be a list of gene names) -m (required) pair file of
motif edges -p (optional) pair file of PPI edges -o (optional) tag for output files -a (optional) value to be used
for update variable, alpha (default=0.1) Additional options (see README): -k (optional) kill the program
after it has run k steps (default=1000) -n (optional) output a “stats” file every n steps (default, no stats file)
-w (optional) file with list of covariate weights -l (optional) leave out the lth sample when building the
network -j (optional) retain only j samples when building the network -r (optional) randomization options
-s (optional) value to seed the random number generator (defaults to system time) -v (optional) verbose
output options

Outputs:

(tag_for_output_file)_FinalNetwork.pairs: Bipartite gene-TF regulatory network where each line repre-
sents an edge in the graph (a TF-GENE pair).

Examples:

To run PUMA with the assumption that all regulators can form complexes (estimate responsibility for all
regulators, eg a gene regulatory prior with transcription factors only): ./PUMA -e ToyExpressionData.txt
-m ToyMotifData.txt -o ToyOutput

7



netZooC Documentation, Release 0.2

To tell PUMA to discriminate between regulators that can, and regulators that cannot cannot form com-
plexes (for example a list of microRNAs in miRlist.txt), run: ./PUMA -e ToyExpressionData.txt -m Toy-
MotifData.txt -u ToyMiRList.txt -o ToyOutput

Publications:

https://www.ncbi.nlm.nih.gov/pubmed/28506242

Authors:

Marieke Kuijjer

# Tutorials

Tutorials in netZooC are under construction

1.1 Changelog

1.1.1 0.2.0 (2019-6-31)

• PUMA

1.1.2 0.1.0 (2019-5-28)

• PANDA

8 Chapter 1. Contents

https://www.ncbi.nlm.nih.gov/pubmed/28506242


CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

9


	Contents
	Changelog
	0.2.0 (2019-6-31)
	0.1.0 (2019-5-28)


	Indices and tables

